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1. Introduction and Background 

Composite materials have a high strength to weight ratio and thus possess significant potential for 

application in high-performance, lightweight structures. However, since these laminated structures 

develop significant interlaminar shear stresses and are quite weak across the lamina, delamination, 

transverse matrix cracks and other failure modes intervene and reduce the effective strength of the 

composites to levels much smaller than their true potential. Understanding these failure modes is 

essential not only in determining appropriate allowable loads on composite structures, but also in 

designing improved materials with better properties. 

There have been numerous experiments and models generated to understand and predict the 

phenomenon of delamination in composites (the bibliography lists a selected few publications that 

deal with the issue; Science Citation Index indicates that there are at least 2000 references on the 

subject of composite delamination). In very early work, Chai et al., (1981, 1983) demonstrated that 

delamination was a crucial limiting factor for composites under low-speed impact. The role of 

interlaminar stresses and free-edge delamination in limiting the strength of composite materials 

has also been recognized for quite some time; the early work of Pagano (1978) set the stage for 

intensive investigations in this area. Based on numerous experimental investigations that revealed 

the mechanisms of deformation and failure in composites, micromechanics based constitutive 

models have been developed that capture the mechanical behavior of composite materials; a good 

concise summary of progress in this area can be found in the article by Dvorak (2000). This article 

also provides a listing of open issues in composites that require further attention. Specifically with 

reference to delamination, damage and failure under dynamic loading conditions, Dvorak stresses 

the need for further experimental and modeling research; ideas such as selective reinforcement, 

improved adhesion characteristics and generation of residual stresses are suggested for improving 

the delamination and damage resistance in composites.  

Recognizing that delamination is driven by interlaminar stresses and the weak bond across the 

laminae, much work has been done aimed at determining the role of the lamination in dictating the 

damage resistance of composites under quasi-static and dynamic loading. For example, Tao and 

Sun (1998) performed an experiment to investigate the interlaminar fracture behavior and 

toughness of 0º/θ interface with θ = 30º, 45º, 60º and 90º. They found that the interlaminar 

toughness decreases as the off-axis θ angle increases and remains constant as θ changes from 15º 
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to 90º. Hsiao et al., (1998) studied the effect of strain rate and the fiber orientation on the 

mechanical properties of thick carbon/epoxy composite materials. They observed that the strength 

and ultimate strain values increased as strain rate increased and that the specimen with transverse 

direction fiber has higher stiffness than the longitudinal direction. An impact analysis of laminated 

composite performed by Liou (1997) found that for the anisotropic laminated plate, higher stresses 

exist in the direction having higher stiffness and that the delamination cracks are caused by the 

interlaminar stresses. 

Christensen and DeTeresa (1992) showed that the edge singularities that arise in laminated 

composites either vanish or are minimized for certain special laminations. This is a very interesting 

observation but only applies for special orientations of the loading; however, the underlying idea 

that through proper choice of fiber architecture, one may influence the development of damage in 

composite materials is very important. This idea has been followed up in many analytical 

investigations, but to our knowledge, not in experimental investigations. Suvorov and Dvorak 

(2001a) have explored the possibility of prestressing selected lamina in order to control the 

development of free-edge stresses; this is somewhat akin to prestressing concrete with rebar, with 

the additional influence of material anisotropy. They suggest that by selectively prestressing 

certain layers prior to matrix infiltration/consolidation and then releasing upon curing, large 

compressive prestress can be generated in the matrix layers thereby minimizing matrix cracking 

and delamination. Sovorov and Dvorak (2001b) also indicate that designs of such prestressed 

laminate/ceramic plate assembly can also introduce significant compressive stresses of the order 

of 600 MPa to 1 GPa in the ceramic layer. These models raise interesting possibilities for 

enhancing the mechanical properties of composite materials; the helicoidal composite that is the 

focus of this study is a development along these lines. 

Many investigators have employed through-thickness reinforcement as a way of mitigating the 

delamination problem. The reinforcement can be achieved by many methods such as stitching, 

braiding, z-fibers/z-rods, fiber waviness or adhesive strips. The experiments performed by Rugg et 

al. (1998, 2002) found that the through-thickness reinforcement by z-rods raised the critical stress 

for delamination significantly. For the through-thickness reinforced structure, when the 

delamination cracks initiate and propagate, the z-fibers or reinforcements stop the crack at each 

location. The applied load must then increase to the strength limit of the reinforcement before the 
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delamination cracks can restart propagation until they encounter the next reinforcement. This 

cycle repeats until reaching the last reinforcement and total failure occurs. Therefore, the load and 

displacement diagram presents a stepped line instead of linear line in ordinary laminate, but the 

ultimate load is significantly increased. In very recent work Baucom and Zikry (2003), 

Bahei-El-Din and Zikry (2003) and Zikry et al (2003) have explored the mechanism of failure in 

2D, 3D woven composites and 3D woven porous composites and utilized finite element modeling 

to generate constitutive modeling of the failure in these composites.  

We have taken an approach that combines the two strategies discussed above. We have 

demonstrated (Apichartthabrut and Ravi-Chandar, 2006) in carbon-epoxy systems that by altering 

the lay-up to a helicoidal structure, significant improvements in the strength and impact resistance 

can be achieved (see summary in the next section for details). In addition, by providing 

through-thickness reinforcement by z-pinning with staple, further significant improvements in 

delamination resistance and penetration resistance was demonstrated. The helicoidal lay-up with 

through-thickness reinforcement can be optimized to control the residual interlaminar stresses, to 

inhibit the development of transverse cracks, to increase the delamination toughness, and as a 

consequence to improve the static strength and dynamic impact resistance of the composite. In 

principle, a similar enhancement is possible in glass-epoxy systems, either in laminated or woven 

forms. Providing such enhancements in the strength and impact resistance for the glass-epoxy 

systems is the main motivation of this work. We first provide a summary of accomplishments 

under previous ARO funded research that lead to the development of the helicoidal composite in 

and then describe the results of the work performed under the current grant. 
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2. Summary of Accomplishments of Previous ARO Funded Research 

In a previously study, Apichartthabrut and Ravi-Chandar, (2006) developed a new design for 

composite materials that is based to some extent on imitating biological composites. Many natural 

composites in plants and animals form in a helicoidal structure (Neville, 1993); adopting this 

strategy to engineered composites, we have fabricated composite panels with a helicoidal 

architecture (Apichartthabrut and Ravi-Chandar, 2003). Design of this helicoidal structure and the 

fabrication method are discussed in Appendices A and B respectively. The helicoidal composite 

was generated by laying 40 plies at 10 degree increments, resulting in two turns of the helix with 

four additional layers oriented along the zero direction at the middle. The helicoidal structure 

provides a nearly continuous grading of the in-plane stiffness in the thickness direction and 

therefore reduces the interlaminar shear stresses significantly. In addition, favorable thermal 

residual stresses are built into the 

plate during fabrication. Plate 

bending tests were performed on 

circular plates clamped at the 

boundaries and loaded by a 

spherical punch at the center. A 

comparison of the response of a 

40 layer helicoidal architecture 

with a 24 layer [+45/-45] 

composite plate (representative of 

a plain weave architecture) in 

bending tests is shown in Fig. 1; 

the two composites were nearly of 

the same total thickness, but all 

quantities are plotted normalized with the appropriate thickness. The nonlinearity observed in all 

of these tests is due to the large indentation of the plate by the spherical punch used to apply the 

loads. Due to the discrete nature of the ± 45° composite, it developed cracks in a catastrophic 

manner and delaminated across the entire plate diameter after a deflection of one plate thickness. 

On the other hand, the graded nature of the helicoids allowed for a reduction in the interlaminar 

Figure 1. Comparison of the load-deflection diagram for the 
helicoidal composite and the ± 45° composite. 
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shear stresses and hence delamination was delayed until much larger plate deflections and a 

corresponding increase in the load carrying capacity.  

In spite of the graded nature of the helicoidal composites, once the delamination was initiated, 

it grew catastrophically resulting in a significant load drop. This is because delamination is 

controlled by the interlayer matrix and this is not affected significantly by the graded architecture; 

therefore improvements in the fracture energies cannot be obtained by altering the in-plane 

architecture alone. This has commonly been approached through a three dimensional fiber 

architecture obtained either by a woven fabric reinforcement or through cross stitching or stapling; 

we adopted the stapling approach as a first step (Rugg et al., 1998). The helicoidal composite was 

stapled through in an axisymmetric pattern with the z-reinforcement provided by steel staples of 

cross sectional area 0.00125 in2 with approximately 11 staples per in2; as a result, roughly 1.35% 

of the area is covered by the staples. The staples are introduced into the composite before curing; 

during insertion, the easy mobility of the fibers results in very little damage to the fibers; they 

simply move aside to allow the staple to penetrate. The influence of the staples on the composite 

toughness was examined in a double cantilever beam (DCB) test. The response of the stapled plate 

under bending is compared with the unstitched and +/-45 plates in Fig. 1. Both helicoidal 

composites – unstitched and stitched – exhibit a similar response until a deflection of about twice 

the plate thickness. However, in contrast to the unstitched composite, the stitched composite did 

not exhibit catastrophic delamination. Clearly a high unloading stiffness can be seen in Fig. 1 

indicating that this specimen is capable of withstanding a much greater ultimate load. Crushing 

damage localized at the point of load application, but there was no global delamination. 

The impact response of the helicoidal composite was also examined in comparison with the ± 

45° specimen. A steel projectile with a rounded nose was propelled from an air gun at a speed of 

about 55 m/s; the total impact energy was about 700 J. The resulting damage is shown in Fig. 2. 

While the ± 45° specimen exhibited complete penetration as seen in Fig.2a, the helicoidal 

composite indicated only a localized indentation (Fig. 2b). It is suspected that there might be some 

internal delaminations, but this could not be verified. In the z-reinforced helicoidal composite, 

even this localized damage was not visible. From this demonstration, it is clear that the helicoidal 

architecture possess significant advantages in terms of strength and damage resistance. Of course, 

we did not make any attempt at optimization of either the architecture or the z-reinforcement patter 
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3. Impact Response of Helicoidal Composites 

A relatively new use for composites is in the area of high-speed projectile impact. Some cloth-like 

composite materials (Kevlar) can be made into bullet-proof vests. Stiffer carbon fiber plates have 

even begun replacing heavy steel shielding in light armored vehicles. Improving the ballistic 

capabilities of these carbon and glass fiber plates is the focus of this work. To increase a 

material’s ballistic resistance it is necessary to increase the amount of energy absorbed by the 

material during the impact event. This is typically quantified by a value known as the ballistic 

limit, V50, of the material; the ballistic limit is the lowest velocity at which a standardized 

projectile can impact a target and obtain complete penetration.  

With fiber composites there are several energy absorption mechanisms: matrix fracture, fiber 

deformation and breakage, friction, fiber/matrix debonding and delamination. Studies described 

by Harel et al (2000) showed that delamination accounted for a major portion of the absorbed 

energy, with fiber strain and matrix fracture also having significant contributions. Delamination 

is caused by high inter laminar stresses as well as a low through-thickness debonding resistance. 

Inter laminar stresses develop when there is a sizable difference in the elastic properties of two 

successive lamina. Usually this strength discrepancy comes from a large change in the fiber 

directions across two neighboring lamina. Jianxin and Sun (1998) showed that inter laminar 

toughness decreases as the fiber angle between lamina increases from 0° to 15°. At angles greater 

than 15° the interlaminar toughness was approximately constant. The helicoidal design makes 

use of these findings by rotating the fiber direction of each subsequent lamina by only 10°. A 

smaller rotation would have resulted in a very thick laminate, while a larger rotation would have 

resulted in a decreased inter laminar toughness as described earlier. The exact layup of the 

helicoid is [0/10/20/30/40/50/60/70/80/90/100/110/120/130/140/150/160/170/(0)2]s. More energy 

should be needed to debond this laminate than a laminate with equal thickness composed entirely 

of layers oriented only at right angles to each other.  

In order to increase the through-thickness debonding resistance of a laminate, many 

researchers have used reinforcement techniques that act perpendicular to the plane of the 

laminate. Some of these methods involve stitching, braiding, or weaving fibers together. Other 

methods use adhesive strips placed in between lamina. Cox et al (2002) showed that 

through-thickness reinforcement by z-rods increased the level of energy needed to cause a 
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delamination. To achieve this type of reinforcement the laminate is literally stapled together. 

Z-rod reinforcement not only increases the critical stress for delamination, but also can act as a 

crack arrestment device. Once a crack has been initiated in the matrix material it does not take a 

significant increase in energy to propagate through the matrix. However, if the crack intersects a 

z-direction rod it will be stopped until the applied load is enough to pull out or break the rod. 

This cycle will be repeated each time the crack intersects a new rod thereby making the load vs 

displacement plot into a stepped line. Fiber strain also plays a significant role in the energy 

absorption of composite materials. In this research the effect of placing thin layers of 

polycarbonate between carbon fiber layers is investigated. These isotropic materials can 

experience high levels of strain without fracture, and may absorb enough energy to delay the 

onset of fiber break. 

 

3.1. Numerical Simulation of Impact Response of a Helicoidal Composite 

Several computer models were made using ABAQUS finite element tools to simulate the dynamic 

impact event on a clamped circular plate in order to explore the design of the helicoidal composite. 

To replicate the clamped plate with finite elements only the cut-out area is needed. Therefore, the 

model considered is a 280 mm diameter disc; each composite layer is 0.17 mm thick. There are a 

total of 40 layers, making the entire model 6.8 mm thick. Each model is completely restrained 

against displacements and rotations around the edges in order to reproduce a clamped boundary 

condition. The projectile is represented as a rigid body that has the same dimensions and mass as 

the real projectile. The projectile velocity can be modified to match the velocity produced in each 

experiment. All of the models use the same orthotropic material properties for the elastic elements. 

In the simplest elastic model all of the composite layers remain intact and completely bonded 

during impact. In more representative models, a cohesive interaction allows for delaminations to 

occur between layers. There are separate cohesive models which simulate either the high speed or 

the low speed experiment and these will be discussed below. Two different layup designs were 

compared in this part of the study. A standard layup with a [(0/90)19/0]s (referred to as a 0/90) 

stacking sequence is compared to a helicoidal layup with a [0/10/20/30/40/50/60/70/80/90/100/ 

110/120/130/140/150/160/170/(0)2]s stacking sequence.  
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Modeling with cohesive elements in this way allows a large displacement to effectively disconnect 

two layers of the composite material, thereby simulating a delamination. The cohesive element 

properties are given in Table 2. As with the elastic model in the previous simulation the results 

shown here correspond to a projectile velocity of 48.6 m/s  

 
Table 2. Cohesive element properties 

Property 
Knn 

(GPa) 
Kss 

(GPa) 
Ktt 

(GPa) 
max 

(GPa) 
max 

(GPa) 

c
nG

(GPa) 

c
sG

(GPa) 

c
tG

(GPa) 

 4.5 1.7 1.7 10 8.6 55 100 100 

 
 

As shown in Figure 8, the 1.68 GPa flexural strength of NCT304-1 Carbon Epoxy was not 

exceeded on the backside of plate in the 45.0 microsecond run time; this was also true for the 

helicoidal model. The maximum displacement this time was around 1.8 mm, reflecting the fact 

that the interlaminar properties make the specimen more compliant. The corresponding peak stress 

is about 1.24 GPa, significantly smaller than the elastic model. There is a small difference in the 

displacement through thickness between the helicoid and the 0/90, but this is not likely to be 

important.  

Comparing the delamination zones in the two models shows a 16.6% increase in the number of 

debonded cohesive elements from the helicoidal model to the 0/90 model, suggesting that the 

helicoid could dissipate more energy. Comparing the simple elastic model to the cohesive model 

shows that delamination plays an important role in the deformation of a composite plate under 

dynamic loading conditions. At the center of impact the difference in displacement between the 

cohesive and elastic model was 0.36 mm for the 0/90 model. The difference in displacement for the 

helicoidal model was slightly less at 0.3 mm. By allowing plies to separate the plates are less stiff 

flexurally once a critical load has been reached. This decrease in flexural stiffness means there will 

be greater deflection in a delaminated plate than with an intact solid plate. However, including 
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at a time between frames 4 and 5; these frames are shown enlarged in Figures 16. The printed lines 

in the figures are aligned to the 0° fiber direction.  

The high speed images were processed to determine the out-of-plane displacement as indicated 

earlier. Figure 17a shows the variation of the out-of-plane displacement along a horizontal line, 

from the center towards the clamped boundary, at different times (frames 5 through 9). A 

comparison of these measurements to the results of the numerical simulation is shown in Figure 

17b. Figure 18 shows a comparison of the overall deflection of the plate both from the experiment 

and the simulation. The maximum displacement at frame 8 was measured in the test to be 4.973 

mm, between 99.5 and 132.6 microseconds after impact. The cohesive helicoidal model is used to 

calculate the deflection 121.5 microseconds after impact. The displacement prediction lies directly 

in the range observed in the physical experiment; the displacement profiles generated in both 

analyses match very closely as shown in Figure 17b. The model described in Section 3.1, with 

cohesive elements is capable of replicating the deflection response quite well. The first fiber break 

is apparent in frame 8; frames 7 and 8 are shown enlarged in Figure 19. Several fiber strands are 

apparent at the center of the plate in frame 8. While matrix cracking should precede fiber break, it 

is not possible to identify the formation of crack from these pictures. Figure 20 shows the 

progression of damage as the projectile continues to penetrate the plate. The final image captured 

with the high speed camera is shown in Figure 20b; the damage area is large, but complete 

penetration could not be achieved in the helicoidal composite.  

With the demonstration that the ABAQUS model with cohesive elements is capable of 

replicating the overall deflection of the back surface, we explore the stress calculations. The peak 

backside stress at 121.5 microseconds after impact was calculated to be about 1.79 GPa. 

Comparing this to the tensile strength of the NCT403-1 carbon fiber of 1.68 GPa, one can infer that 

fiber break should occur at about this time; this is precisely what is observed at frame 8. The 

cohesive ABAQUS model can be considered valid up to the point where the stresses exceed the 

strength of the material. Since we do not have a good model for capturing fiber break, the 

simulations could not continue beyond this point.   
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around the sample. This grouping is then secured to a fixed platform in the firing range.  

Two break screens are placed between the barrel of the gun and the test plate. These screens are 

fragile pieces of paper that have embedded wires that form an electrical circuit. When the 

projectile passes through the screens the current is broken and a timer and trigger signal are started 

or stopped. By having a known, fixed position for each break screen the pre-impact velocity, inV , 

of the projectile can be determined. In order to determine the residual velocity after penetration, a 

grid with 5 mm line spacing is placed behind the specimen on a horizontal plane below the path of 

the projectile. Four 120 Watt halogen lights are positioned to illuminate the grid from multiple 

angles. A high speed video camera is placed above the firing range. The camera faces a mirror 

which angles the view across the back side of the sample and on to the grid. This camera is 

triggered by the second break screen. Recording at 19,047 frames per second, this camera captures 

images of the projectile once it has passed completely through the test plate. Since the number of 

pixels per meter in each image is known from initial calibration, the exit velocity, outV , can be 

determined by counting the number of pixels the projectile moved in a set number of frames. 

Because of safety concerns involved with live fire testing and the limited number of samples 

available, a strict testing procedure was necessary. The 0.50 caliber gun was aimed correctly by 

placing a laser in the barrel and adjusting both vertical and lateral placement. The laser must go 

through the center of both break screens and the sample. The sample as well as the break screens 

and the gun, were firmly secured in place. Each break screen and the high speed camera trigger 

was tested prior to each test to verify their proper operation.  

The bullet used in this study is a 12.7 mm diameter fragment simulating projectile (FSP) as 

depicted in Figure 23. These highly standardized bullets are useful because they have sharp edges 

which can reproduce the cutting effects from shrapnel. The FSPs used in this study had a mass of 

13.4 0.1  grams. After weighing each FSP, a bullet casing is selected. These casings can be 

reused if a new priming cap is installed after each firing. Next, a small amount of gun powder is 

measured out. To achieve speeds between 170 – 250 m/s, only 1 to 2 grams of powder is needed. 

Because this is such a small amount of gun powder an even ignition is difficult to attain. The best 

results were accomplished with a black powder substitute instead of standard smokeless gun 

powder. After measuring the powder it was funneled into the casing, the powder was held in place 

with several pieces of wadding that was gently tapped down. With the wadding in position the FSP 
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mechanism of energy dissipation appears to be the breakage of fibers, the architecture does not 

improve the overall performance significantly; as soon as the input velocity exceeds 50V , one 

cannot see any difference between the 0/90 and the helicoid. The corresponding results for the 

helicoid with staples are also shown in Figure 29 (and Table 5); the response is quite similar to that 

of the unreinforced helicoid. There might be a small increase in the ballistic limit, but once again 

as soon as this is exceeded, the penetration behavior appears to be unaltered. The woven glass fiber 

epoxy laminates exhibited very similar performance; the corresponding results are shown in 

Figure 30 and Tables 7 and 8. The data points fall almost exactly on that for the carbon fiber data 

suggesting that when the failure is fiber dominant, there is little difference between the carbon 

fibers and glass fibers. Finally, the laminates in which polycarbonate was interspersed between the 

carbon fiber layers exhibited improved performance; the corresponding results are shown in 

Figure 31 and Table 6. A systematic improvement in the performance is observed; the data are 

fitted by a logarithmic curve in Figure 31; the ballistic limit is estimated to be 50 200V   m/s, a 

nearly 40% improvement; it is also clear that the entire ballistic response is shifted to larger impact 

levels. The underlying reason for this improvement in performance is the dynamic response of the 

polycarbonate. Polycarbonate is a ductile polymer, capable of significant shear deformation. 

Therefore, placing this material in between the carbon fiber lamina increases the shear resistance 

and increases the dissipation. Only one plate was manufactured with this material combination; 

additional experimentation is required in order to pursue this further and optimize the design. 
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Table 3: Cross-ply laminated plates; carbon-epoxy 

Plate 
number 

Architecture 
Impact 
location 

inV  

(m/s) 
outV  

(m/s) 
50V  

(m/s) 
Remarks 

1 0/90 center 267 199 178 
2 0/90 center 203 105 174 

2 0/90 
above 
center 

132 0 132 
incomplete 
penetration 

2 0/90 
right of 
center 

169 0 169 projectile embedded 

2 0/90 
left of 
center 

191 92 167 
 

2 0/90 
below 
center 

192 96 167 
 

3 0/90 center 240 174 165 
3 0/90 top 227 154 167 

3 0/90 
right of 
center 

245 174 172 
 

3 0/90 bottom 227 157 164 

3 0/90 
left of 
center 

229 152 171 
 

4 0/90 center 233 160 169 
 
Table 4: Helicoidal plates without z-reinforcement; carbon-epoxy 

Plate 
number 

Architecture 
Impact 
location 

inV  

(m/s) 
outV  

(m/s) 
50V  

(m/s) 
Remarks 

6 Helicoid center 231 143 181 
7 Helicoid center 239 139 195 

7 Helicoid 
below 
center 

244 151 191 
 

7 Helicoid 
above 
center 

174 0 174 
incomplete 
penetration 

7 Helicoid 
right of 
center 

235 146 184 
 

7 Helicoid 
left of 
center 

215 125 175 
 

12 Helicoid center 223 132 179 
14 Helicoid top 217 106 189 

14 Helicoid 
left of 
center 

258 193 171 
 

14 Helicoid bottom 215 93 194 

14 Helicoid 
right of 
center 

224 79 210 
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Table 5: Helicoidal plates with z-reinforcement staples; carbon-epoxy 

Plate 
number 

Architecture 
Impact 
location 

inV  

(m/s) 
outV  

(m/s) 
50V  

(m/s) 
Remarks 

15 Staple/Helicoid center 250 174 180 
16 Staple/Helicoid center 287 221 184 
17 Staple/Helicoid center 226 134 182 
17 Staple/Helicoid top 202 100 176 

17 Staple/Helicoid 
right of 
center 

197 0 197 
incomplete 
penetration 

17 Staple/Helicoid bottom 221 136 175 

17 Staple/Helicoid 
left of 
center 

249 175 176 
 

18 Staple/Helicoid center 185 0 185 
incomplete 
penetration 

18 Staple/Helicoid 
above 
center 

189 17 188 
 

18 Staple/Helicoid 
below 
center 

176 0 176 
incomplete 
penetration 

18 Staple/Helicoid 
left of 
center 

183 0 183 
incomplete 
penetration 

18 Staple/Helicoid 
right of 
center 

171 0 171 
incomplete 
penetration 

 
 
 

Table 6: Helicoidal plates with polymer layers; carbon-epoxy 

Plate 
number 

Architecture 
Impact 
location 

inV  

(m/s) 
outV  

(m/s) 
50V

(m/s) 
Remarks 

22 polycarbonate center 205 10 205 
22 polycarbonate top 210 37 207 

22 polycarbonate 
right of 
center 

218 0 218 
incomplete 
penetration 

22 polycarbonate 
left of 
center 

230 56 223 
 

22 polycarbonate bottom 205 0 205 
incomplete 
penetration 

22 polycarbonate corner 263 86 249 
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Table 7: Cross-ply plates; glass-epoxy 

Plate 
number 

Architecture inV  

(m/s) 
outV  

(m/s) 
50V  

(m/s) 
1 Uni-1-Shot-001 313 261 173 
2 Uni-2-Shot-001 286 238 160 
2 Uni-2-Shot-002 283 226 171 
2 Uni-2-Shot-003 258 194 170 
3 Cross-1-Shot-001 259 202 162 
3 Cross-1-Shot-002 283 226 170 
3 Cross-1-Shot-003 267 218 153 
4 Cross-2-Shot-001 220 161 150 

 
 

Table 8: Helicoidal plates; glass-epoxy 

Plate 
number 

Architecture inV  

(m/s) 
outV  

(m/s) 
50V  

(m/s) 
5 Helicoid-1-Shoot-001 281 234 156 
5 Helicoid-1-Shoot-002 261 199 168 
5 Helicoid-1-Shoot-003 262 205 164 
6 Helicoid-2-Shoot-001 237 174 161 
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4. Summary and Conclusions 

The purpose of this research was to experiment with unconventional layups in composite 

laminates and to improve on the ballistic impact performance of conventional composites. 

Because one of the primary failure modes of composite materials is delamination, several designs 

were created that attempt to minimize the interlaminar stresses that cause delamination. These 

designs include a helicoidal layup [0/10/20/30/40/50/60/70/80/90/100/110/120/130/140/150/160/ 

170/(0)2]s, a helicoidal layup with through thickness support provided by stainless steel staples, a 

plain-weave glass-fiber with 0/45 as well as helicoidal arrangement, and a [(0/plastic/90/plastic)6/ 

0/plastic/(0/plastic/90/plastic)6/0] layups (with polycarbonate as the plastic material). These 

designs were compared to a standard [(0/90)19/0]s layup.  

Three separate experiments were performed on the composite plates. The first one, under 

quasi-static loading, indicated that a helicoidal plate would take significantly more load before 

failure than a standard orthogonal layup. The second set of tests performed was a low speed 

dynamic impact analysis. The plates were impacted with a low velocity (but massive) projectile. 

This allowed displacement measurements to be taken on the backside of the plate by a high speed 

camera. Analysis was conducted using the ABAQUS finite element software. Each lamina was 

discretized in the simulation and the helicoidal and 0/90 layups were compared under different 

loading conditions. A cohesive zone model was used to capture the delamination behavior of the 

laminate. The results showed that the helicoidal model was less prone to delamination during an 

impact event. In the final set of experiments each plate was penetrated multiple times by a 

fragment simulating projectile. By measuring the velocity of the projectile before and after impact, 

it was possible to determine how much energy was absorbed by each of the different layups. The 

helicoidal and helicoidal with staples both performed slightly better than the standard 0/90 design 

in terms of the ballistic limit 50V . The stapled design retained much of its strength after the first 

shot; the The design with polycarbonate layers absorbed considerably more energy than any of the 

other designs and exhibited a 40% increase in 50V .  

Each composite design studied in this research has its own unique failure mode. The standard 

0/90 layup delaminated in nearly every layer; however, the delamination was confined to a region 

within a one inch radius of the impact. The helicoidal design had a long thin line of delamination in 
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most layers. The area of delamination extended more three inches from the point impact along the 

fiber direction, but was less than a half inch wide. The stapled helicoidal design had the least 

amount of delamination. Instead of bending the plate and forcing the layers to separate, the 

projectile sheared its way through the fibers and plugged out material. The staples prevented any 

damage accumulation from happening after the first shot. The one mode of failure that all the 

plates shared was shearing of the fibers in the first several layers. The FSP round has two sharp 

edges that allow it to slice through material as it penetrates. The composite plate that had layers of 

polycarbonate proved to have the highest ballistic limit. Experimenting with other materials such 

as glass fiber, ceramics, and high temperature resistant plastics may show even better results. 
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Appendix A. Design of the helicoidal architecture 

Since the design parameter space – of material properties, property gradation, residual and 

pre-stress etc – is quite large, we approached the design from a geometric perspective. Considering 

only a plate structure, limiting the thickness to a nominal 0.25 in, and using standard prepregs, the 

starting parameters of the design of the helicoids were well constrained. Limiting the plate 

thickness to 0.25 in enabled experimental comparison to other graphite-epoxy plates of classical 

lamination architectures. Within these constraints, we have potentially 40 layers to distribute 

across the plate thickness. Taking a cue from biological composites, if we use an orientation 

change of 10° between neighboring layers, two pitches of a helix can be described in 36 layers. 

The additional 4 layers were placed in middle, all oriented in the 0° direction; in applications, this 

may be taken as the direction of the most common loading. In order to eliminate or minimize the 

elastic coupling between extension, bending and twisting deformations, we attempted to enforce 

symmetry and balance of the lamination about the middle plane of the plate. Both symmetry and 

balance can be accommodated by using the following graded architecture for the lamination 

sequence: [180/170/160/150/140/130/120/110/100/90/80/70/60/50/40/30/20/10/(0)2]s. This 

gradation in the orientation of the fibers in the helicoidal composite is shown in Figure A-1. 
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Figure A-1. Orientation of the layers of the helicoidal composite. 
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Clearly, there are many other possible options for the lamination, and an optimization of the 

orientation needs to be evaluated. It is also possible to consider specific layups for each particular 

application. This was not addressed in the current research program.  

The pre-pregs are carbon-epoxy rolls obtained from Newport Adhesives and Composites 

(designation NCT 304-1). The nominal properties of this material are listed in Table A-1. The 

properties of the prepregs assumed in our analysis are given below:  

03.0 ,303.0 GPa, 4.4 GPa, 5.12 GPa, 124 21121221  GEE  

For the 40 layer lamination described above, the laminate stiffness matrix is easily calculated 

and is shown below:  

6

493 116 0

116 359 0 10  N/m

0 0 121

 
   
  

A ;  0B ; 

2000 419 424

491 1370 259  N/m

424 259 512

 
   
   

D  

 

The fact that all components of the B matrix are zero could have been guessed from the 

symmetry of the lamination. Also, since the lamination is balanced, the 16A , 26A   terms are also 

identically zero. Since there are no cross-ply arrangements, the 16D  and 26D   terms do not 

disappear and hence there is an elastic coupling between bending and twisting. One may also 

calculate the effective engineering constants of the laminate; these are found to be 

265.0 ,324.0 GPa, 0.17 GPa, 1.46 GPa, 4.56  yxxyxyyx GEE 
 

As can be determined from these engineering constants, the gradual change in the properties of 

the neighboring layers results in a nearly isotropic response of the laminate. To exhibit this more 

clearly, the variation of the engineering stiffness of the laminate as a function of the orientation 

with respect to the global x-direction (the direction with four layers of zeros in the middle section) 

is shown in Figure A-2. The C11 and C22 stiffness components vary very little as a function of the 

orientation; it is also important to observe that the C16, C26 stiffnesses are small, suggesting that the 

coupling of extension to shear is small, but nonzero. If the extra layers of 0° in the middle of the 

plate are removed, a perfectly isotropic structure can be obtained; however, that is not the main 

objective of the helicoidal composite – the reduction in the interlaminar shear stresses is the 

primary objective. 
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Table A-1. NCT304-1 Carbon/Epoxy property 

Property Value Units 

Prepreg gel temperature 300-350 ºF 

Prepreg gel time 1.5 hr 

Resin content 42±2 % 

Tensile strength 240 ksi 

Tensile modulus 18 106 psi 

Flexural strength 245 ksi 

Flexural modulus 17.6 106 psi 

Compressive strength 128.3 ksi 

Compressive modulus 17.5 106 psi 

Gic (DCB test) 2.83 (in-lb/in2) 

Giic (ENF test) 7.96 (in-lb/in2) 

Poisson’s ratio 0.303 Dimensionless 

All results normalized to 60% Fiber Volume 
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Figure A-2. Reduced stiffness matrix of the laminate as a function of orientation with respect to the 
global x-direction.  
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Appendix B. Fabrication of the helicoidal composite 

A standard hand lay-up and vacuum bagging process was used for manufacturing composites. The 

prepreg of the composite material studied in this research was manufactured by Newport 

Adhesives and Composites, Inc. The nominal properties of the fiber and matrix are shown in Table 

A-1. The prepreg carbon-fiber epoxy NCT304-1 supplied in the form 36 inches wide continuous 

roll were cut to the desired size, (12 inches long by 12 inches wide), in a large shear cutter. For the 

helicoidal composite the stacking sequence of the specimen required 40 layers cut in the different 

orientations according to the desired lay-up. Therefore by using a cutting pattern corresponding to 

individual directions, the prepreg were cut according to the desired orientations. The next step 

after obtaining multidirectional cut laminas was stacking the specimen in the correct sequence. 

Good alignment (deviation ±2° for the hand lay-up process) of each layer was very important 

because greater misalignment between the layers would change the properties of the laminate 

significantly. While the layers were stacked to form the laminate, trapped air bubbles were 

removed by rubbing the top layer with the interleaving paper simultaneously.  

 
After obtaining the complete stacked laminate the stack was placed in a vacuum bag. The 

purpose of vacuum bagging is to remove air pockets and voids that could form in the composite 

during curing process. The stacked laminate was placed between two one-inch thick aluminum 

plates, and the thermocouples used to monitor the temperature distribution around the specimen 

plate were attached. Next, the vacuum bag was sealed by the sealant tape. Finally, the vacuum 

bagging assembly was inspected by connecting the thermocouples to temperature channels in the 

autoclave and attaching vacuum connector to the vacuum hose for inspecting the sealing system. 

For curing the composite, the laminate plate was placed in an autoclave and subjected to the 

temperature and pressure history shown in Figure B-1. The temperature and pressure cycle used in 

the autoclave for curing the specimen is comprised of three steps: the heat-up, curing and 

cool-down. According to the manufacturer’s material data sheet the temperature and pressure 

cycle in the autoclave should be as shown in Figure B-1.  
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For the consolidation process, the vacuum bagged assembly was located inside the autoclave 

chamber to heat and pressurize along the curing profile. In order to obtain good quality laminates 

the temperature and pressure distribution should be controlled precisely. Some preliminary tests 

were run to obtain the distribution of temperature gradients inside the chamber in order to 

determine the areas with the most uniform temperature distribution in the chamber. A few tests 

were also set up to monitor the thermal gradient through the thickness of the plate; in these tests six 

thermocouples were placed at the center of different locations to display through the thickness 

temperature of the quarter inch thick composite specimen as shown in Figure B-2. The pressure in 

the autoclave was controlled by adjusting the pressure valve to set-up the pressure corresponding 

to the manufacturer’s recommended consolidating pressure of 85 psi. For curing laminate the 

temperature was increased at about 1-5°F/min until approach to the recommended curing 

temperature of the epoxy matrix (around 300-350°F) and maintained at the constant level for 1.5 

hours. After the plate was cured, the cooling process was performed simply by turning off the 

power to the autoclave; the cooling rate was quite low and it took around 6-7 hours before the 

temperature decreased below 70°F. 

 

Figure B-1. Temperature and pressure cycle used for curing the helicoidal composite 
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As shown in the graph in Figure B-3 the temperatures displayed by thermocouples inside the 

specimen and between specimen and tool plates were quite uniform. Even though there were some 

deviations of the specimen temperature from the set-point and the outside surface of vacuum bag 

during the heating cycle, the overall results were satisfactory. Thus these results provide assurance 

that the specimen should have an even temperature distribution during curing process. During 

fabrication, the temperature distribution was monitored with eight thermocouples placed in 

specific locations around the tool plates and the vacuum bag. After removing the cured laminate 

from the autoclave, an ultrasonic C-Scan was used to inspect the quality of the specimen.  

 

Figure B-2. Location of the thermocouples for evaluation of the through-thickness temperature 
distribution. 
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Figure B-3. Through-thickness temperature distribution in the specimen during curing monitoring locations are 
indicated in Figure B-2. 




